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INTRODUCTION

The differential equations of motion of the Moon about its center
of mass have been known since the time of Euler (Moutsoulas, 1971),
but due to the complexity of the driving terms (torques from Earth, Sun,
etc.), they can only be solved approximately. Formulaticns in which
the orbital motions are approximated by functions containing terms
secular and periodic in time are amenable to exact solution, and the
theories of motion derived are called analytic theories. Modern
analytic theories, such as those of Eckhardt (1970) and Migys (1976)
are invaluable for their concise description of different modes of

physical libration, and for the possible detection of free lunar libra-

tions, but are constrained in accuracy by their dependence upon (relatively

inaccurate) analytic orbit theories.

In order to obtain the improved accuracy necessary ior

the interpretation of modern lunar laser ranging and very-long-

baseline interferometry observatiohs, Williams (1975) and others

at the Jet Propulsion Laboratory developed a series of lunar

libration models, the latest being called LLB-5, based upon

direct numerical integration of the equations of motion for the
libration. The LLB-5 integration is done in non-inertial coordinates,

so that the equations of motion contain "inertial-force" terms.

Also, no variational equations are integrated in LLB-5 and the
partial derivatives needed for adjustment of the parameters of

the model are obtained by finite-differencing.
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Our lunar rotation is based upon the direct numerical
integration of Euler's differential equations for the rotation
of the moon, with the rotation being described by Euler angles
referenced to an inertial coordinate system. The variational
equations for the partial derivatives of the Euler angles and
their time-derivatives with respect to all of the parameters
in the equations of motion, and with respect to the initial
conditions of motion, are integrated in parallel. The detailed
formulation of our model, and results of comparing it with

LLB-5, are described in the following sections.

EQUATIONS OF MOTION

The state of rotation of a rigid body with respect to an arbitrary
coordinate system can be expressed by six quantities: three angles
defining a rotation of axes, and their temporal derivatives. We choose
to describe the lunar rotation in terms of Euler angles and their
derivatives as defined by an inertial coordinate system referred to
the mean equinox and -equator of 1950.0. The ES axis is perpendicular
to the mean equator of 1950.0 and points northward, the El axis is the
intersection of the mean equator and ecliptic of 1950.0 and points

towards the constellation Aries, and the 52 axis completes the right-
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handed system. Letting the Xy (i=1,3) axes be a right-handed system
coinciding with the Moon's principal axes of inertia, where the moment
about the Xy axis is least and the moment about X5 greatest, the Euler
angles are defined as indicated in Figure 1.

Euler's equations governing the motion of a rigid body about its

center of mass are

"
-3

Awl + (C -B)w2w3 1

B, - (C-Awus = T,

]
-3

cd»s + (B-A)ww, s ' (1)

In this representation the Wy (1=1,3) are the components of the lunar
angular velocity vector 3 along the three principal (body-fixed) lunar
axes, X ; A, B, and C are the moments‘of inertia about the principal
axes; and the Ti are the components of the total torque vector about the
corresponding axes.

Since we desire an ultimate accuracy of .01" for our model, we should
examine all torques which might result in displacements of this magnitude.
The largest libration term is due to the regression of the node of the
lunar equator on the ecliptic and is of roughly S000" amplitude._ Thus,

so long as we are not driving near a resonant frequency, we should expect
6

that all torques that are no more than 2x10 = times the dominant term
(central-body term for the Earth) should be negligible. The far-field
torque exerted on the Moon by an external body is directly proportional to

the body's mass, and inversely proportional to the cube of its distance.
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: for the bodies of the solar system demonstrates
minimum

A calculation of M/T
that the torque on the Moon may be approximated as the sum of the Earth and
Sun induced torques to an accuracy of 1 part in 106, with the solar contribu-
tion only 1/200 that of the Earth. The torque due to the oblateness of the

Earth is not included in the model described in this paper, but we

intend to incorporate it in the near future. Introducing the lunar

moment of inertia ratios &= C;—B s B= g—;—A , and y= EE—A- , we then have:
S0t g gy & Tyl dA
¢ WD e R Tl
& cipugse LTyt Tt 2)

where Tei and T@i represent the components of the torque due to Earth

and Sun, respectively.
We desire the equations of motiocn in terms of the inertially-
referenced Euler angles. The relation between the body-fixed angular

rates and the inertial Euler angles is well known (Goldstein, 1950):
: w, = f-cos ¢ + ysin ¢ sin 8

wy = -ésincb + w cos ¢ sin$§

wy = & cos 9 + 5 (3) "

ity = S A
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Differentiating the equations (3) with respect to time results in a

system of equations linear in ¥, 8, and &, the solution of which forms

our Euler angle equatiocns of motion:

s ¥ = csc e(c:olsincbd»cﬁzcosdﬁ) + 80 cscHd - Y6cotd = F

@:
[}

; (] ks . i i & 7. % '=
. E cul cos ¢ w, sin¢ Yo sin® = F2

= Wy - Ficos@ +ybsin® = B (4)

The éi are found in terms of Euler angles by equations (2) and (3)

and it only remains to evaluate the body-axis torques due to Earth and

Sun. The potential due to the lunar gravitational field may be approx-
§ imated as a finite expansion in spherical harmonics as follows (Kaula, 1966):
™ 20
q
U(r,L. -~ R s B a1y
: A n
n=2
10 e Z
L) z (;) [Cnm cosmA + Smn sinmA] an (sin L)) (5)
n=2 m=1l
p where G = Gaussian gravitational constant 3
! M¢ = mass of the moon g

a = lunar radius

. T = distaﬁce from the lunar center of mass
L = selenocentric latitude
A = selenocentric East longitude

Pn are the Legendre polynomials

an are the associated Legendre functions

J ; are di ion icients
a’ Cnm’ and Snm re dimensionless coefficien




In terms of the rectangular coordinates Xg it is easily shown that:

r = (xf + xi + xi)!é : (6a)
X
sin L = —ri (6b)
i
cos A = R (6¢c)
(x; + x3)
X
(x; + x3)

In our model the Earth and Sun are treated as point-masses of mass Mb

(b = 8, @) and therefore experience the force
‘fb = MU : 7

where VpU is the gradient of U evaluated at the position of body b.

The resultant torque vector acting on the moon is

T x(-F)

M, (T x%0) 8)

T
b

with T the vector from the center of mass of the Moon to the body. If
s . .
the selenocentric components of r are (xl, Xy x3) then the selenocentric

torque components for body b are:

U U )
g ol Xy 50— = Xo ——
1 Mb(Z o N

U U
s “b("s s a_x;>
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In the evaluation of 3U/3x.k we note that we may neglect the central force

2 - : g
(1/r”) term since it produces no net torque about the center of mass. In

fact any term in BU/Bxk of the form g Xy s where g is any function not
explicitly containing the index k, will cancel in the torque cross

product. We obtain for either Earth or Sun:

20 nd ' 10 -"n° o
S 0 Mg IO D o(einyy il g g i@ L
xk n=2 Fn xk n=2 m=1 ¥
*{[C__cosmh +S__sinm\] P'_(sin L) 8sink
nm nm nm axk
+mf{-C__sinmA +S__cosmA] P__ (sin L) 24 }
nm nm nm 5xk
+ terms which do not contribute to the torque (10)
From equations (6a) and (6b) we derive
asinL _ S3k %3 7
5 p i 3 (11a)
*x T

-

where ‘Sij is the Kronecker delta defined by Sij =] fori=3jand 0

otherwise. If we differentiate (6d) with respect to X, We get

Wi, Ll rsaagyy s 2
cos -a-x-; (x1 + xz) (xl 52k - xlxz le)
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which by (6¢) gives:

2 :
arr ot Tk T2k 2 1k i
x, e oy - (11b) {
X 2 4
The three second-order equations of motion are now rewritten as a é
set of six first-order differential equations for ease of integration %
]
method. Defining @
E
= =50 i
yl i lp Y4 i \p {
Y, =0 Ys =40
yS = ¢ Y6 = ¢
we obtain:
¥t % L
Fg = X Yoo F3 (12)

where the Fi are given by equations (4). The six initial conditions of
the state vector y are the three Euler angles and their rates at some

initial epoch. ‘ ¢

VARIATIONAL EQUATIONS

Our primary reason for modelling the lunar physical librations is

to enable us to process accurate data and consequently arrive at improved
estimates for the parameters affecting libration. Often this is accom-

plished through the iterative use of a linear least-squares estimator;




thus, in addition to the model for motion, it is desirable to supply
partial first-derivatives of the state vector with respect to the libra-
tion parameters at all times. Referring back to the defining equations

(4) for the driving terms Fk we note that in general the

are explicit functions of time, the set of adjustable parameters P, and
the Eulerian state vector y. We differentiate the equations of motion (12)
with respect to any specific time-independent parameter P; and interchange

the order of differentiation to obtain the variational equations:

i(ay}<> - =13 as)
dt 3pi Spi 5 y
ﬁ.(iﬁﬁ) i
dt \ op. B 2
1 Tt A s

with p # i denoting the parameter set p exclusive of P;- The initial

conditions for these equations are all zero except when Py is one of the

state vector initial conditions, then

%) i
%, S Sy X B2y, e
t =t° oy bt vl

In general a change in P; will affect the l'-‘k both through an explicit
dependence of Fk upon p., and also implicitly through a change evoked in ]

the state vector y by the integrated effect of the 1 perturbation. 1

A s St
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oF oF 6 oF dy
_.]i = —-_li + Z ——k. . __g‘. k = 1,3 (14)
g i e T e
t,p#i ' t,p,y #2

t’F # 1:;

The vector aFk/apilt’;’Eﬁls found through differentiation of the explicit
dependence of the Fk upon p., therefore when P is one of the libration

initial conditions this term vanishes. From equations (4) we have

oF ( 3w, %0, ) ;
—— = cscBisin¢ = + cos ¢ :
P; ¢ 9p; 9p, /

oF 3w, 30,
= = =—— = sin
3, cos ¢ 3, in¢ 3_1:

[}

]
(2]
(o]
(7}
@D

1
ap. (15)

To evaluate the quantities a&;k/api we may substitute equations (9) into

equations (2) and then differentiate:

e U U
1 3 {Mb[ 3 ( b> 3 ( b>]+.r 3 (1
—_— = .. X - X, = | — 4
Bpl 2309 i bed,0 A 2 Jdp 5x3 3 3p1 X, bl 5pi (A)} 1
3w M, au U |
2 B { [ d ( b) 3 < b d l} |
= WWw + it 3 - X +T |
apl 13 3 i bed,0 B L3 5p1 5x1 1 5pi 5x3 b2 dp; (B) k
3 M, aU 3u
3 =, [ 2 ( b) ) ( b)] ) (1
[Pr—— -, W. + Y — [ X —— | — s n——— +T s | e (16)
api 172 api b=$,6{ G 1 Bpi X, 2 api axl b3 Bpi (C)} |

The partial derivatives with respect to specific parameters in equations (16)

are simple and can be found in Appendix A.l.




The only quantity in (14) which remains to be formulated is the 3 %6
"feed-back" matrix 8Fk/8y£; it is this term which supplies the initial
condition partials. First we differentiate the defining equations (4)

for the Fk with respect to each component of the state vector:

9F, ad,l aéz
W = cscB|sin¢ a“P+cosq$--w-
3F 3w W

—ﬂ?— = cos ¢ a—wl - sin¢ _sz'

W - T . )

oF 3w %

»351- = csce[sinda 391 + cos ¢ —3-63] - cot © cscB[(:)l sin ¢ + t:)z cos q‘:]

- 64.9 cot 6 csc§ + \l'Jé cscze

9¥, 3, ooy
i s cos ¢ g 1. sin ¢ -5 - V¢ cos 8

o, 3‘:’3 o, e
5 Bt a cos 6 -5 * sinSF1 + Y6 cos 6

oF, ; W 3‘:’2]
5% = csc#b wlcos¢ + sin ¢ W°m251n¢+°°s¢7§$'
oF w e

-532- = cos ¢ %l-sintbdl-gqsd)d)z-sincb -5%
?—F—i = a—‘:’i cos © ﬁ
% b - 3

e

Jadiasis Al
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dw, amz :
csce[smcb — + cos ¢ ——] -0 cot 6

oy M
3F, 3w, w, |
—— = cos¢p ——= - sin¢p —— - ¢ sin B
W WY Y
3F % 9k
v % o= = €050 == 4 0 sind
v LU WY
3!-‘1 awl duw, . 3
—_— = csce[sinzp —— + cos ¢ —.—]+ pcsc 8- YPcoth
LS 39 90
3F, M AW
- = cos¢ —= - sin¢p —
0 a8 30
oF, W BF
—— = —— -cos® —— + YPsind
a6 36 6
8F1 Bwl awz i
—_ = csce[sinda —— + cos ¢ ,]+ 0 cscH
3 3¢ 3
oF 3w, w,
—— = ¢cos¢ —— - sin¢p —— - Ysind
3 3 3% Q
1
F 5 80.\3 3F1
o A e a5 M (17)
3 3 3 i

To obtain the quantities Bu')i/ayz we May again substitute equations (9)
into equations (2) and differentiate, this time with respect to the

Euler angles:

3w1 30)3 awz |
%, '°<‘°za‘y:*“w:> i

. .
'%; ax BUb 37 5 <3Ub> ax3 an ) |
dy <§x 3 3y,\9x,/ 9y, ox
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dw ow
3 1

B-(O) —_— W ___>
1 ayz 3 ayz

M U 9x., JU U d9x. JU
> “:ib‘ 5 aa (axb>* o Lt aa <axb>‘ e axbl
b=8,0 Ty X9&y Yy 9% T X PRe 79 FAx )

8y£ 1 ayz 2 Eﬁ
3, ax. 3U U\ 8x, aU
o % " % (axb)* e <axb)‘ o Bxb§
b=8,0 7o \9% 7y % i B e R

Notice that the summation terms are zero for £ = 4, 5, or 6 since the
torques are not dependent upon the angular velocity of the Moon. The
terms multiplying the moment of inertia ratios are kinematic and can be

derived from equations (3):

awl = 0 ?_w_z. = 0 2 ' ;3(0—3- = 0
k2 v I
3w1 z awz % : ow 4
35 = Y sin¢ cos © T—swcoscpcose "59‘""’51“9
. g . . o : Bl iy
56 = -elsmq; + P sin@ cos¢ % = -Bcosd - Ysing sin@ - - 0
ow w
--,l = sin ¢sin © -a-wz;— = cosdsin® —— = COS 0O
M - N Ll
3 - 3w
—:1‘ = cos ¢ -——2- = -sin ¢ . -_.i = 0
98 38 96
ow w dw
P = O -—--2— = O ‘—3 = 1

(19)




Inside the summation we have the terms axi/Byl which represent the change
in the selenocentric coordinates of a perturbing body with respect to
changes in the Euler angles. The selenocentric coordinates are trans-

formed from the inertial system by a rotation matrix R defined by
X = T{ W, 6, ¢) E'

and given by Goldstein (1950) as:

ch,e,cp) =| cosdcosy - sindcos Osiny cos ¢siny +sin dcos Bcos Y sin ¢ sin 6
-sin¢cosy - cospcos 8siny -sindsiny + cos dcos Bcos P cos ¢ sin 8 | (20)

sin®siny -sin 6 cos ¥ cos 6

Now € does not depend on the orientation of the.selenocentric coordinate

system, so:

Fxl

N = (-cos ¢sinyP- sindcos Bcos ) €1 + (cos¢cpsw- sin ¢ cos B sin{) 52
3x1

g A sin ¢ sin Gsinlpé,'l - sin ¢ sin O cos w&z + sin ¢ cos BE,'S

axl

—— = (-sin¢cos Y-cos dcosBsingd) 51 + (-sin ¢ sin Y +cos d cos B cos V) Ez /

+ cos ¢ sin B 5;3
-a-‘-,;z- = (sin ¢ sin P -cos ¢ cos B cos ¥ )El + (-sin ¢ cos P -cos ¢ cés B sin )53 i

38 = cos ¢ sin esinwal -cosq)sinecoswgz + cos ¢ cos 653




% = (-cos ¢cos Y +sin¢cosBsin¢)€1 +(-cos ¢siny -sin ¢ cos 8 cos w)iz
-sin ¢ sin 6 53

3x3 :

w = sin ¢ cos tPEl +sin 6 sin dJEz

ax

—aé- = cos 9sin tl;El - cos 6 cos w&z - sin 953

3x3

o n 0 (21)

The quantities a/ayz(BUb/Bxk) can be found through application of
the chain rule:

3 BUb 3 Bxi 3 8Ub

s | s §. 22
3)'1 axk i=1 Syz Bxi Bxk (22

The terms axi/ayz were evaluated in equations (21), and differentiation

of equation (10) yields:
U 20 J 2 g :
3 b 8.7 T Yo i 9" sinl e 3sinlL 9 sinlL
= GM = P (sinl)r + P (sinl)r
5xi 5xk q ngz T rZ n §xk 5xi n Bxk 7xi ‘
- (e1) P (sinyy 23inL I :
n 5x.k T
10 n . >
an 1 ). i . ' ; -3 sinl
i m(nz;. m;l @ :2' (1#1) T | Can SOs ™A + S sinmA )Py, (sin L) %,

i e

4 : N
+m (-Cnm sinm) + smn cos m}) an(sm L) =—

o

el




s gy R Y

3 e i 3 R S e D S5 A5

18

: 2
> ¢ ' ; 9" sinlL
r|(C cosm + S sinm\) E’nm(sm L) Hk—&:

" ; 3dsinl 9 sinl
+ an(sm L) ]

Bxk axi ¢
; ' = dsinL 9A

+m (—Cnm sinmA + Snm cos mA)[an(sm 1) _SYk_— 'ﬁ: .
3% . 3% 9 sinl F
+ an(SHl L) FX:.TX_._ + an (sm L) W —-sx—-] ]
i & ]
2
2 . & Asy s :

-m (C cosmA + S sinmA)P - (sin L) -5-’; sé-i-;— (23)

The second derivatives are found by differentiating equations (11) as

indicated, and simplifying:

s

dsinl XX Og Xyr S X by xg

axk axi r5 r3
a?n Oy 8y + x5 S50 (x) 8y - Xy 6p) + Xy g5 4% 6550 (x5 Sy -y Sy
5xk N 2 202
i (x1 + xz)

This completes the derivation of the variational equations for our
libration model. If there are n parameters for which we desire derivatives
we can integrate the 6n first-order variational equations in parallel with

the 6 equations of motion by ax-xi' suitable numerical method.

VERIFICATION

The equations of motion and variational equations have been integrated

using an Adams-Moulton predictor-corrector method (Smith, 1968) at 8 steps/day




within the framework of the M.I.T. Planetary Ephemeris Program (Ash, 1965).

The orbital motions of the Moon and Earth were read from ephemeris tapes

i :x which were integrated from initial conditions obtained in a least-squares

. fit to data: 5 years of laser ranging data of the Moon (King et al., 1976),
and many years of optical and radar observations of the planets (Ash et al.,
1971). The variational equations have proven to be consistent with the

B ‘; equations of motion to better than .01% by finite differencing of the

latter; the fact that one may check variational equations in this manner
E 4 is another strong incentive (in addition to the operational convenience of
£

E@ : the parallel integration of the partial derivatives) for their use.

In order to verify the accuracy of our integration of the equations

of motion, we have compared the integrated Euler angles with LLB-5. The LLB-5

Cassini angle initial conditions were transformed to the corresponding

W

Euler angle initial conditions referenced to the inertial 1950.0 mean
equator-equinox system. The lunar gravitational harmonic coefficients,
moment of inertia ratios, and the mass of the Earth were also set to the

values used to generate LLB-5. The result of the integration is compared

T A R AT TR S AL

with LLB-S in Fig. 2, where differences in the Cassini angles (which must
be transformed back from the Euler angles of PEP's output at each tabulaf
point) are plotted as functions of time. The greatest discrepancy is in

T, and has the form of a sinusoid with a 2.9 year period and an amplitude
of 0.29", This period is that-of the free mode of libration in longitude,

corresponding to a homogeneous solution of Euler's equations. This mode

. has been stimulated by a longitude offset of 0.29" between thé lunar
ephemeris used to create LLB-5 and that of King et al. The cause of this

orbital offset is unknown, but under investigation.
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ﬁ In order to minimize the effects of the JPL-MIT mean lunar orbit

;i difference for our comparison of the two lunar libration integrations,

fi we introduced thrge ad hoc small angles to describe an arbitrary orienta-
:é 2 tion difference between coordinate systems; Specifically, we modelled

g

the angles as constant biases in each of the three Cassini angles.

E . Since the Cassini angles describe the difference between the true lunar
libration aﬁd the mean lunar orbit (vis-E-vis Cassini's laws), a bias

F in a Cassini angle follows directly from a corresponding offset in the
| orientation of the mean lunar orbit. These biases were simultaneously
fit with six initial conditions of rotation to minimize the sum-squared
differences of Cassini angles between the PEP integration and LLB-S.

The adjusted initial conditions were then integrated and the new Cassini

angle differences from LLB-5 are plotted with biases included in Figure 3;
the estimated biases and post-fit rms Cassini angle differences (about

the biases) are displayed in Table 1.

ki i bkt

The largest differences between the PEP post-fit integration and

LLB-5 appear about equally in the Cassini angles p and Io, and correspond

to a lunar surface displacement of about 16 cm from each angle, or about

Sl SRS L e A ach

4 cm in range to the retro-reflectors farthest from the sub-Earth point.

The sinusoidal signatures are predominantly those of the free libration

modes of p and Io — a combination of 27.2 day and 24 year components

; in both. These free librations are of a magnitude consistent with the
| hypothesis that they are being stimulated by the known differences in
the lunar ephemerides used in the integrations.

In order to ascertain which libration model more closely represents
the true motion of points on the lunar surface about the center of mass

we have performed parallel fits to laser ranging observations of the
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Apollo retro-reflectors. The maximum difference between the Euler model
solution and a corresponding solution using LLB-5 was 0.2 ns (3 cm in
range) rms for a series of range observations on a specific retro-reflector
over a period of 2 or 3 years, with the rms residual for the Euler model
equal or lower than LLB-5 for all such series. It should be emphasized,
however, that the lunar orbital emphemeris employed in these data analyses
was the same ephemeris which was used to generate the Euler angle libration
model and perhaps the lower residuals merely reflect the consistency of
orbital and rotational models.

In our development of the Euler angle model we have made many approx-
imations, some of which we will continue to ignore and o;hers we will
correct in the future. The lunar orbital and rotational motions are cross-
coupled and we are in the process of modifying our computer algorithms to
integrate them simultaneously. The Earth's oblateness appears to affect
libration at above the .01" level, so we plan to include the low-order
gravity field of the Earth in our model. Finaily, the Moon is not a rigid
body, and is subject to solid body tides raised mainly by the Earth,
resulting in an inertia tensor that is non-diagonal and time-variable; also
there is undoubtably some tidal dissipation in the Moon. The magnitudes
of these effects are difficult to estimate, depending as they do upon
unknown quantities such as the lunar Love numbers, and Q for the Moon,
though a rough calculation places their effect at about the level of the
other errors in our model, so we plan to incorporate a flabby Moon into our
theory as well. Ultimately, we hope to reduce the total libration errors
to below the anticipated future lunar laser ranée uncertainties of 3 cm,
so that the full benefit of the quality of the laser ranging data can be

realized.
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APPENDIX A.1l

PARTTAL DERIVATIVES WITH RESPECT TO
- SPECIFIC LIBRATION PARAMETERS

In order to derive the partial derivatives indicated in equation (16)
we must first determine which members to include in our set of adjustable
libration parameters. In principle any unknown parameter affecting the
libration should be modelled as such and have derivatives generated for
it; practically, we need only model the small set of parameters whose
uncertainties influence the libration to a measurable extent (defined,
for the purpose of this paper, as greater than 1 part in 105 of the whole
libration). We are left with the following (significant) parameters.

1) six initial conditions of the state vector

2) J

2
3) Band y

4) third and higher order harmonic coefficients

Note that we have arbitrarily chosen Jz, B, and y as our independent
second-degree coefficients. sz is a combination of all three, while

a depends only on B and Yy, and since we choose the lunar principal axes

of inertia to define our selenocentric coordinate system, C21’ Sy1> and

522 are identically zero.

s Now we will derive the dérivative terms in equation (16). BB/Bpi ]

and ay/Bpi are non-zero only when Py o B or y respectively. da/dp;, i
BA'I/api, BB'I/Bpi, and ac'l/api are all zero for p; other than the

second degree parameters B, vy, and J,, when we get the following:

2,
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The remaining chain-rule terms in equations (16) are the Blapi (BUb/axk).

The harmonic coefficient partials are merely the terms of the linear

combination which the coefficients multiply:

au GM n X
) b q (a ' . : N
Kj;<ﬁ;> s (?) P MSALL) [og - 5 SAuL] (A-2a)

et e SRR
ﬁnm axk o ONT {cosril m“(smL)[3k~-r—s1n]

1

-msin mA an (sin L) -y

[62k cosA-Slk sinX]} ( -2b)




-GM n ;
b q <a) { ' X ¢
e - sin mA P sinL) [6+, - _X sinlL
S 2 r2 T nm ( ) [ 3k = )

m\ P (sinl) _1 £ . cosh - & natma } A-
+ m cos nm(sm ) s [ - cos o sin A ] (A-2c)

For p; one of B, Y, or J2 we apply the chain rule to find the (additional,
in the case of Jz) change in the potential gradient due to the change

induced in C__:

22
U
g 1SRy 0 g
sz ’é':q 9; 3C,, \3x (A-3)
Since
' 1 +8
C = L L —_———
22 22 2B -y +By
we have
-
T
st COSIR
” 2 (28-y+8y)>
Y SR T (A-4)
44 2 (@B-v+8Y)? L

The second term in the RHS of equation (A-3) is given by (A-2b) with

n=mn-=2,
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Table 1. Comparison of Best-fit PEP Euler Integration with LLB-5

bias ~ post-fit rms difference

T .287" .009"

P .085" 021"
lo .066" 019"

b E
E £

ot i3

sk

e AT 2 R AL

N R




28

R R 1 v
Bl

e AR T KT Mo b Nt i S B

[ine
of

nodes

G L BULER ANGLE




¢ UN914

0000hhe - ar

W
8.8@% .cc.ocmm .S.QQWN LOQ.DO@N .8.8w.~ .8.oow— 0000kt 00°0021 00°0001 00°008 00°009 00°00h, m
r T T =3 T T T ¥ —y T - } } + + -+ —t t + + e t o
u
o
D
2D
o5
o
2
O
|
le
wun
o
0000fRKe - dr =)
g.oom.bw .O0.00#N 00°0022 00°0002 00°0081 00°0091 00°00h 00°002t 00°0001 00°00 00°C09S 00°00h, m
b t | e + t + — + t + { t t —t + + 4 + —+ - t =}
2 3
o
D
o e}
e e s e o
PRI It o
N aswm
m
: g o
- W
- 1o
w1
o
. 0000hhe - ar : o—
00°0082 00°00he 00°00¢ce 00°0002 000081 00°00¢+ 00 "00ht 00°00ct 00 °0001 00°008 00°009 00°00h, ﬂXD
| e - t i t -+ -+ + t + t t t t + + t + + t -+ o
(3]
= <
1l A
D
D
AAAAAAAANANNNVWVWWWWWWWWWWWWWWMWVWIIAAIA A A | 00
w
mM
i O
T O
SOI GHUTT QYWIOISNWHEL d0 NOILVYDELNI

! . i HAI0d - SHT1T




¢ AUN9I1d

0000hhe - Or

—
000092 00°00h2 0070022 ©0°0002  00°CO8I 0070081 00°00h 00°0021 000001 00008 00°0N9 00°00M, 2
_ r g T e 3 T T  act T -+ T + } +— J. + + + h- { + +- ~+ 'ﬂu
i 8
D
2D
£t
o
83
o)
. S
lo
(% ]
3% g
: 0000nhe - ar : =)
. 00°0Ls2 00°00h2 00°0022 00°0C02 00°0081 00°0091 00 *00h!1 00°0021 00°0001 00°008 00°009 S.oe._nHu
; } } t + + + + $ $ $ + “ + + { + 4+ + t + + + =)
a
- /2<§§<<<§5>>>>>>>>2<S>>2<S§2<52$>§>25>>>>§2<<<<<<<<<<<<<<<S2$2§ %
. o
: o
; : o9 .
1 ¢ ()]
. w
lo

0000fhhe - ar :
00°008  00°003 0000

I

E o

T

00 00se 00°00he 00°0022 00°0002 00°0081 00°0081 [00°00h1 00°0021 007000

06°0~

i
T

00°0

§J33S-34Y UWIISxI]

S4SYIE ITONY INISSYD € ANY SOI 9 JO SH7T O IId WOoud SOI 40 NOIIWYOAINI
SE1T - ¥3'1Ind

0s°0




